Modern Cryptography

Indistinguishability Notion in the Private Key Encryption

Perfect Secrecy

Limitation of Perfect Secrecy

The key space that is at least as large as the message space.

Shannon's Theorem

Let (GEN, ENC, DEC) be an encryption scheme with message space \mathcal{M} for which $|\mathcal{M}| = |\mathcal{K}| = |\mathcal{C}|$, the scheme is perfectly secret if and only if

- Every key $k \in \mathcal{K}$ is chosen with equal probability by the algorithm GEN i.e., $\operatorname{Prob}[K=k] = \frac{1}{|\mathcal{K}|}$.
- For every $m \in \mathcal{M}$ and every $c \in \mathcal{C}$, there exists a unique key $k \in \mathcal{K}$ such that $\text{ENC}_k(m)$ outputs c.

 \bigcirc

3 / 9

Impracticality of Perfect Secrecy

The assumptions behind perfect secrecy are very strict and largely impractical.

- First, the key space must be as large as the message space, which creates significant challenges related to storage and distribution.
- Second, perfect secrecy ensures security against all powerful adversaries. However, in practice, we usually only confront <u>polynomial-time</u> adversaries.
- In the definition of perfect indistinguishability, the experiment must succeed with a probability exactly equal to $\frac{1}{2}$. However, permitting a small, negligible probability advantage for the adversary does not significantly affect the outcome.

▶ By allowing this minor relaxation, we will later see that we can develop encryption schemes that utilise much smaller keys than those required in perfectly secret schemes.

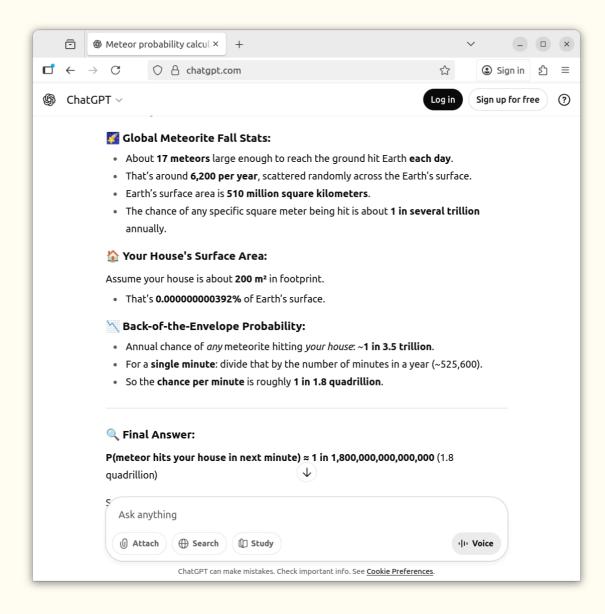
⚠ V

Warning

Are we sacrificing too much by allowing such a relaxation?

► This probability relaxation in the crypto setting is often in the order of $\frac{1}{2^{128}}$.

Probability of a meteor falling on your house in the very next minute



- Thus, we have estimated the probability of a meteor falling on this classroom in the very next minute, which is roughly equal to $\frac{1}{2^{50}}$.
- All of you are still comfortably seated in your chairs without running around.
- Therefore, we can safely allow a negligible probability relaxation for the adversary without practically compromising the security of the scheme.

Private Key Encryption Scheme- Updated Definition

It is defined by three PPT algorithms $\Pi := (GEN, ENC, DEC)$ in the security parameter n.

- $k \leftarrow \text{GEN}(n)$. WLOG, we can assume |k| > n.
- $c \leftarrow \text{ENC}(k, m)$, for $m \in \{0, 1\}^{*}$.
- \perp or m := DEC(k, c)

For every n, for every $k \leftarrow \text{GEN}(n)$ and for every $m \in \{0, 1\}^*$, m = DEC(k, ENC(k, m)).

Shashank Singh IISERB 7 / 9

Computational Indistinguishability for eavesdropper

We define an experiement $\text{PrivK}_{\mathscr{A},\Pi}^{\text{eav}}(n)$ for an encryption scheme $\Pi = (\text{GEN}, \text{ENC}, \text{DEC})$ with parameter n and an adversary \mathscr{A} as follows:

$\operatorname{PrivK}_{\mathscr{A},\Pi}^{\operatorname{eav}}(n)$:

- 1. \mathscr{A} is given $\Pi(n)$ and it outputs $m_0, m_1 \in \{0, 1\}^*$ with $|m_0| = |m_1|$.
- 2. $k \leftarrow \text{GEN}(n), b \xleftarrow{\$} \{0, 1\} \text{ and } c \leftarrow \text{ENC}(k, m_b) \text{ is given to the } \mathscr{A}.$
- 3. \mathscr{A} return a bit b'.
- 4. The output of the experiment is $b' \stackrel{?}{=} b$.

*

Definition 1

A private key encryption scheme $\Pi(n)$ has an indistinguishable encryption in the presence of an eavesdropper, or is EAV-secure, if for all PPT adversaries \mathcal{A} , there is a negligible function negl() such that, for all n,

$$\operatorname{Prob}\left[\operatorname{PrivK}_{\mathcal{A},\Pi}^{\operatorname{eav}}(n) = 1\right] \le \frac{1}{2} + \operatorname{negl}(n). \tag{1}$$

*