Modern Cryptography

Private Key Encryption Scheme

Shashank Singh

SETTING OF PRIVATE-KEY CRYPTOGRAPHY...

CLASSICAL CRYPTOGRAPHY

- ▶ Before sending the message (plaintext) *m*, Alice transforms (encrypts) it into a message *c* (ciphertext), using an algorithm ENC and a key *k*.
- ▶ Bob, on receiving *c*, decrypts it to get *m*, using a corresponding algorithm DEC and the same key *k*.

SETTING OF PRIVATE-KEY CRYPTOGRAPHY...

CLASSICAL CRYPTOGRAPHY

- ► The key *k*, needs to be (somehow) shared between the two communicating parties in advance and it is not known to the adversary.
- ► Alice and Bob could be same. Recall the disk encryption, where the same party encrypts the data on a disk and later decrypts it to get back the data.

ALGORITHMS

-a step by step solution to a problem.

ALGORITHMS

Important features of an algorithm

- 1. Finiteness: An algorithm must always terminate after a finite number of steps.
- 2. Definiteness: Each step of an algorithm must be precisely defined.
- 3. Input: An algorithm has zero or more inputs: quantities that are given to it initially before the algorithm begins, or dynamically as the algorithm runs.
- 4. Output: An algorithm has one or more outputs: quantities that have a specified relation to the inputs.
- 5. Effectiveness: Its operations must all be sufficiently basic that they can in principle be done exactly and in a finite length of time by someone using pencil and paper.

(TIME) COMPLEXITY OF AN ALGORITHM

```
def is_prime(n):
for a in primes_upto(sqrt(n)):
    if (a divides n):
        return False
return True
```

- ► The time complexity deals with how fast or slow a particular algorithm performs.
- ▶ We define it as a numerical function T(n), which represent the running time of the algorithm as a function of input size (in bits) n.
- ▶ But T(n) depends on the implementation! A given algorithm will take different amounts of time on the same inputs depending factors as: processor speed; instruction set, disk speed, brand of compiler and etc. So we want to define T(n), which do not depend on the above factors.

(TIME) COMPLEXITY OF AN ALGORITHM

```
def is_prime(n):
for a in primes_upto(sqrt(n)):
    if (a divides n):
        return False
return True
```

- ► The time complexity deals with how fast or slow a particular algorithm performs.
- ▶ We define it as a numerical function T(n), which represent the running time of the algorithm as a function of input size (in bits) n.
- ▶ The way around is to estimate efficiency of each algorithm asymptotically. We will measure time T(n) as the number of elementary "steps" (in a model of computation), provided each such step takes constant time.

In this section we will consider functions that have \mathbb{N} as their domain and $\mathbb{R}_{>0}$ as the range.

Definition (O-notation)

We say that a function f(n) is *big-oh* of g(n), written as f(x) = O(g(n)), if there exists positive constants c and n_0 such that

$$0 \le f(n) \le c \cdot g(n)$$
 for all $n \ge n_0$.

In other words O(g(n)) denotes a set of functions that satisfy the above.

Remark

If
$$\lim_{n\to\infty} \frac{f(n)}{g(n)}$$
 exists and $\lim_{n\to\infty} \frac{f(n)}{g(n)} \neq \infty$ then $f(n) = O(g(n))$.

- ► Show that $f(x) = x^2 + 2x + 1$ is $O(x^2)$.
- ► Show that n^2 is not O(n).

Definition (*o*-notation)

We say that a function f(n) is *small-oh* or *little-oh* of g(n), written as f(x) = o(g(n)), if for any positive non zero constant c, there exist a positive constant n_0 such that

$$0 \le f(n) < c \cdot g(n)$$
 for all $n \ge n_0$.

In other words o(g(n)) denotes a set of functions that satisfy the above.

Remark

If
$$\lim_{n\to\infty} \frac{f(n)}{g(n)}$$
 exists and $\lim_{n\to\infty} \frac{f(n)}{g(n)} = 0$ then $f(n) = o(g(n))$.

Let
$$f(n) = n^2$$
, then $f(n) \neq o(n^2)$ but $f(n) = o(n^2 \log n)$

Definition (o-notation)

We say that a function f(n) is *small-oh* or *little-oh* of g(n), written as f(x) = o(g(n)), if for any positive non zero constant c, there exist a positive constant n_0 such that

$$0 \le f(n) < c \cdot g(n)$$
 for all $n \ge n_0$.

In other words o(g(n)) denotes a set of functions that satisfy the above.

Remark

If
$$\lim_{n\to\infty} \frac{f(n)}{g(n)}$$
 exists and $\lim_{n\to\infty} \frac{f(n)}{g(n)} = 0$ then $f(n) = o(g(n))$.

Let
$$f(n) = n^2$$
, then $f(n) \neq o(n^2)$ but $f(n) = o(n^2 \log n)$

Definition (*o*-notation)

We say that a function f(n) is *small-oh* or *little-oh* of g(n), written as f(x) = o(g(n)), if for any positive non zero constant c, there exist a positive constant n_0 such that

$$0 \le f(n) < c \cdot g(n)$$
 for all $n \ge n_0$.

In other words o(g(n)) denotes a set of functions that satisfy the above.

Remark

If
$$\lim_{n\to\infty} \frac{f(n)}{g(n)}$$
 exists and $\lim_{n\to\infty} \frac{f(n)}{g(n)} = 0$ then $f(n) = o(g(n))$.

Let
$$f(n) = n^2$$
, then $f(n) \neq o(n^2)$ but $f(n) = o(n^2 \log n)$.

Definition (Ω -notation)

We say that a function f(n) is *big-omega* of g(n), written as $f(x) = \Omega(g(n))$, if there exists positive constants c and n_0 such that

$$0 \le c \cdot g(n) \le f(n)$$
 for all $n \ge n_0$.

In other words $\Omega(g(n))$ denotes a set of functions that satisfy the above.

Remark

If
$$\lim_{n\to\infty} \frac{f(n)}{g(n)}$$
 exists and $\lim_{n\to\infty} \frac{f(n)}{g(n)} \neq 0$ then $f(n) = \Omega(g(n))$.

Definition (ω -notation)

We say that a function f(n) is *little-omega* of g(n), written as $f(x) = \omega(g(n))$, if for any positive non zero constant c, there exist a positive nonzero constant n_0 such that

$$0 \le c \cdot g(n) < f(n)$$
 for all $n \ge n_0$.

In other words $\Omega(g(n))$ denotes a set of functions that satisfy the above.

Remark

If
$$\lim_{n\to\infty} \frac{f(n)}{g(n)}$$
 exists and $\lim_{n\to\infty} \frac{f(n)}{g(n)} = \infty$ then $f(n) = \omega(g(n))$.

Θ-NOTATION

Definition (Θ -Notation)

We say that a function f(n) is theta of g(n), written as $f(n) = \Theta(g(n))$, if there exists positive constants c_1, c_2 and n_0 such that

$$0 \le c_2 \cdot g(n) \le f(n) \le c_1 \cdot g(n)$$
 for all $n \ge n_0$.

Remark

If $\lim_{n\to\infty} \frac{f(n)}{g(n)}$ exists and $\lim_{n\to\infty} \frac{f(n)}{g(n)} = c$, where c is a non-zero positive constant, then $f(n) = \Theta(g(n))$.

TERMINOLOGY FOR COMPLEXITY OF ALGORITHMS

Complexity (input size is <i>n</i>)	Terminology	
$\Theta(1)$	Constant complexity	
$\Theta(\log n)$	Logarithmic complexity	+
$\Theta(n)$	Linear complexity	ior
$\Theta(n \log n)$	Linearithmic complexity	ff
$\Theta(n^b)$, for positive integer b	Polynomial complexity	ഥ
$\Theta(b^n)$, where $b>1$	Exponential complexity	
$\Theta(n!)$	Factorial Complexity	

▶ Algorithms with time complexity $\Theta(n^b)$, where n is input size and b is a non-zero positive integer, are called polynomial time algorithms.

TERMINOLOGY FOR COMPLEXITY OF ALGORITHMS

Complexity (input size is <i>n</i>)	Terminology	
$\Theta(1)$	Constant complexity	1
$\Theta(\log n)$	Logarithmic complexity	يواا
$\Theta(n)$	Linear complexity	iei
$\Theta(n \log n)$	Linearithmic complexity	Effici
$\Theta(n^b)$, for positive integer b	Polynomial complexity	ĮΞÏ
$\Theta(b^n)$, where $b>1$	Exponential complexity	
$\Theta(n!)$	Factorial Complexity	

▶ Algorithms with time complexity $\Theta(n^b)$, where n is input size and b is a non-zero positive integer, are called polynomial time algorithms.

PPT- PROBABILISTIC POLYNOMIAL TIME ALGORITHM

- ▶ The polynomial time algorithm is an algorithms with time complexity $O(n^b)$, where n is input size and b is a fixed non zero positive integer.
- ▶ A probabilistic algorithm is one that has the capability of "tossing coins", i.e. the algorithm has access to a random source of randomness that yields unbiased random bits that are independently equal to 1 with $\frac{1}{2}$ probability and to 0 with $\frac{1}{2}$ probability.
- ► A probabilistic polynomial-time algorithm is a probabilistic algorithm that may only perform a polynomial amount of operations including at most a polynomial number of coin-flips.

PRIVATE KEY ENCRYPTION

Let \mathcal{M}, \mathcal{K} and \mathcal{C} represent the set of possible messages (plaintexts), the set of possible keys and the set of possible ciphertexts repectively.

PRIVATE KEY ENCRYPTION..

A private key encryption algorithm is basically a set of three algorithms (we will be more specific later) (GEN, ENC, DEC), which have the following functionalities:

- GEN It is a pobabilistic algorithm, called key generation algorithm. It outputs a key $k \in \mathcal{K}$ chosen according to some distribution.
- ENC It is called encryption algorithm. It takes as input a key $k \in \mathcal{K}$ and a message $m \in \mathcal{M}$ and outputs a ciphertext $c \in \mathcal{C}$.
- DEC It is known as decryption algorithm. It take as input a key k and a ciphertext c and outputs a plaintext m.

Furthermore, it must satisfy the following correctness requirements:

$$DEC_k(ENC_k(m)) = m \forall m \in \mathcal{M}, \forall k \in \mathcal{K}.$$

KERCKHOFFS' PRINCIPLE

The cipher method must not be required to be secret, and it must be able to fall into the hands of the enmy without inconvenience.

► The security of a cryptographic scheme relies solely on the secrecy of the key, not on the secrecy of the underlying algorithms.

CAESER'S CIPHER (SHIFT CIPHER)

For
$$0 \le k \le 25$$
, define

Let $\mathcal{M} = \mathcal{C} = \mathcal{K} = \mathbb{Z}_{26} := \{0, 1, \dots, 25\}.$

$$ENC_k(m) = (m+k) \mod 26$$

and

$$DEC_k(c) = (c - k) \mod 26$$

► Caeser's Cipher is the oldest recorded cipher, which is a Shift Cipher with the key k = 3.