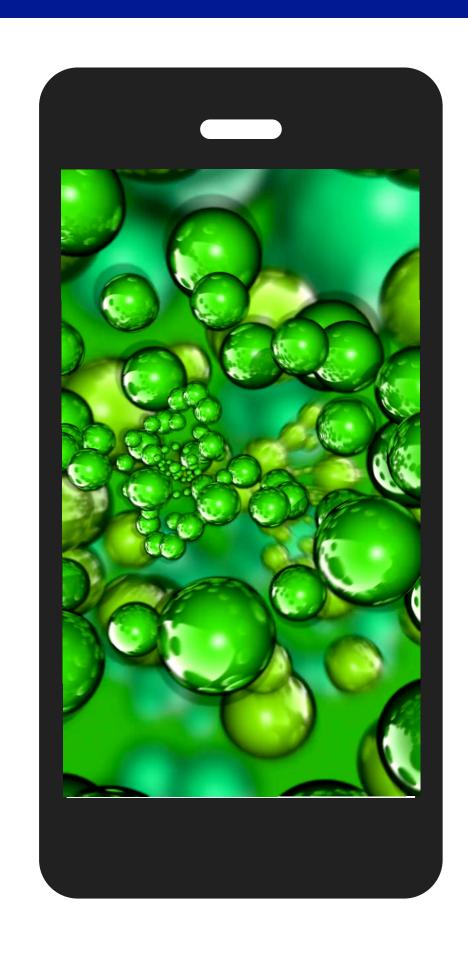
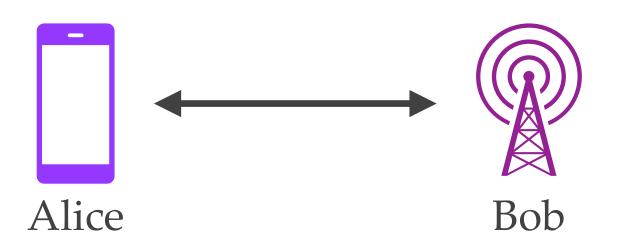
Generic attacks on MAC schemes

Guessing the tag of a message $x \in \{0,1\}^*$.

- ◆ Attack: Select $y ∈_R \{0,1\}^n$ and guess that $MAC_k(x) = y$.
- * **Analysis**: Assuming that the MAC scheme is ideal, the success probability is $1/2^n$.
- * Note: Guesses cannot be directly checked.
- * MAC tag guessing is infeasible if $n \ge 128$.


Generic attacks (2)

Exhaustive search on the key space:


- * **Attack**: Given r message-tag pairs $(x_1, t_1), ..., (x_r, t_r)$, one can check whether a guess h of the key is correct by verifying that $MAC_h(x_i) = t_i$ for i = 1, 2, ..., r.
- * Analysis: Assuming that the MAC scheme is ideal, the expected number of keys for which all (x_i, t_i) pairs verify is $1 + FK = 1 + (2^{\ell} 1)/2^{nr}$. For example, if $\ell = 128$, n = 128, r = 2, then $FK \approx 1/2^{128}$. Assuming that FK is negligible, the expected number of operations is $\approx 2^{\ell-1}$.
- * Exhaustive key search is infeasible if $\ell \ge 128$.

GSM

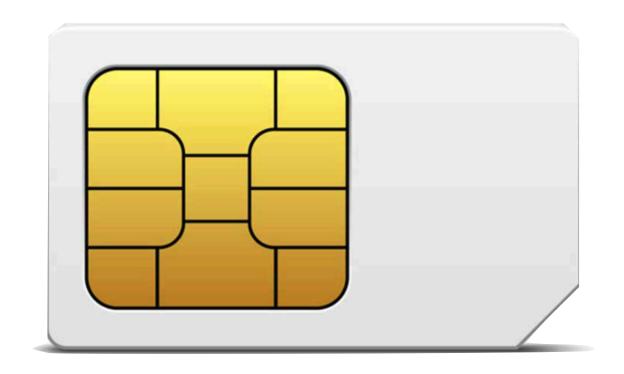
- * Global standards for mobile communications
 - * 2G, 2.5G: GSM (Global System for Mobile Communications)
 - * 3G: UMTS (Universal Mobile Telecommunications System)
 - * 4G: LTE (Long Term Evolution)
 - * 5G: NR (New Radio)
- * We will *sketch* the basic security mechanism in GSM.
- * GSM security is notable since it uses only symmetric-key primitives.
- * 3G, 4G and 5G security improves upon GSM security in several ways, but will not be discussed here.

GSM security objectives

Objectives:

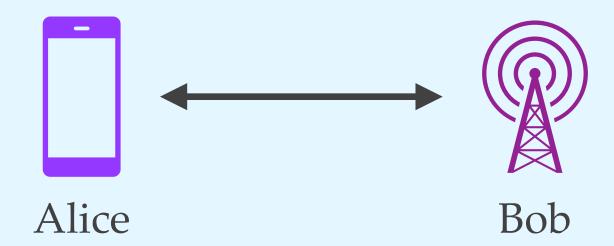
- 1. Entity authentication: The cell phone service provider needs the assurance that entities accessing its service are legitimate subscribers.
- 2. Confidentiality: The data exchanged between a cell phone user and their cell phone service provider should be confidential.

<u>Note</u>: GSM does *not* provide end-to-end security, i.e., confidentiality of the conversation between two cell phone users. Also, authentication is only one-way — the phone authenticates itself to the base station.


GSM description

* Cryptographic ingredients:

- * Enc: A symmetric-key encryption scheme.
- * MAC: A symmetric-key MAC scheme.
- * KDF: A key derivation function.


* Setup:

- * A SIM card manufacturer (such as Gemalto) randomly selects a secret key k, and installs it in a SIM card. A copy of k is given to the cell phone service provider.
- * When a user subscribes to a cell phone service, she gets the SIM card which she installs in her phone.
- * Note: A different key *k* is chosen for each user.

GSM description (2)

Alice: cell phone user, Bob: cell phone service provider.

- 1. Alice sends an authentication request to Bob.
- 2. Bob selects a challenge $r \in_R \{0,1\}^{128}$ and sends r to Alice.
- 3. Alice's SIM card uses k to compute the response $t = \text{MAC}_k(r)$. Alice sends t to Bob.
- 4. Bob retrieves Alice's key k from its database, and verifies that $t = MAC_k(r)$.
- 5. Alice and Bob compute an encryption key $K_E = \text{KDF}_k(r)$, and thereafter use the encryption algorithm $\text{Enc}_{K_E}(\cdot)$ to encrypt and decrypt messages for each other for the remainder of the session.