
Modern Cryptography
Private Key Encryption Scheme

Shashank Singh

IISER Bhopal

August 7, 2025

Alice

ENC
m

k

c

Bob

DEC
k

c

m



Private Key Encryption Time Complexity & Asymptotic Notations Private Key Encryption ..

SETTING OF PRIVATE-KEY CRYPTOGRAPHY..
CLASSICAL CRYPTOGRAPHY

public channel

ENC
m

k

c
DEC

k
c

m

▶ Before sending the message (plaintext) m, Alice transforms
(encrypts) it into a message c (ciphertext), using an
algorithm ENC and a key k.

▶ Bob, on receiving c, decrypts it to get m, using a
corresponding algorithm DEC and the same key k.

▶ The key k, needs to be (somehow) shared between the
two communicating parties in advance and it is not
known to the adversary.

▶ Alice and Bob could be same. Recall the disk encryption,
where the same party encrypts the data on a disk and
later decrypts it to get back the data.

2 / 17



Private Key Encryption Time Complexity & Asymptotic Notations Private Key Encryption ..

SETTING OF PRIVATE-KEY CRYPTOGRAPHY..
CLASSICAL CRYPTOGRAPHY

public channel

ENC
m

k

c
DEC

k
c

m

▶ Before sending the message (plaintext) m, Alice transforms
(encrypts) it into a message c (ciphertext), using an
algorithm ENC and a key k.

▶ Bob, on receiving c, decrypts it to get m, using a
corresponding algorithm DEC and the same key k.

▶ The key k, needs to be (somehow) shared between the
two communicating parties in advance and it is not
known to the adversary.

▶ Alice and Bob could be same. Recall the disk encryption,
where the same party encrypts the data on a disk and
later decrypts it to get back the data.

2 / 17



Private Key Encryption Time Complexity & Asymptotic Notations Private Key Encryption ..

ALGORITHMS

-a step by step solution to a problem.

Important features of an algorithm
1. Finiteness: An algorithm must always terminate after a

finite number of steps.
2. Definiteness: Each step of an algorithm must be precisely

defined.
3. Input: An algorithm has zero or more inputs: quantities

that are given to it initially before the algorithm begins,
or dynamically as the algorithm runs.

4. Output: An algorithm has one or more outputs:
quantities that have a specified relation to the inputs.

5. Effectiveness: Its operations must all be sufficiently basic
that they can in principle be done exactly and in a finite
length of time by someone using pencil and paper.

3 / 17



Private Key Encryption Time Complexity & Asymptotic Notations Private Key Encryption ..

ALGORITHMS

-a step by step solution to a problem.
Important features of an algorithm

1. Finiteness: An algorithm must always terminate after a
finite number of steps.

2. Definiteness: Each step of an algorithm must be precisely
defined.

3. Input: An algorithm has zero or more inputs: quantities
that are given to it initially before the algorithm begins,
or dynamically as the algorithm runs.

4. Output: An algorithm has one or more outputs:
quantities that have a specified relation to the inputs.

5. Effectiveness: Its operations must all be sufficiently basic
that they can in principle be done exactly and in a finite
length of time by someone using pencil and paper.

3 / 17



Private Key Encryption Time Complexity & Asymptotic Notations Private Key Encryption ..

(TIME) COMPLEXITY OF AN ALGORITHM

def is_prime(n):
for a in primes_upto(sqrt(n)):

if (a divides n):
return False

return True

▶ The time complexity deals with how fast or slow a
particular algorithm performs.

▶ We define it as a numerical function T(n), which represent
the running time of the algorithm as a function of input
size (in bits) n.

▶ But T(n) depends on the implementation! A given
algorithm will take different amounts of time on the same
inputs depending factors as: processor speed; instruction
set, disk speed, brand of compiler and etc. So we want to
define T(n), which do not depend on the above factors.

▶ The way around is to estimate efficiency of each
algorithm asymptotically. We will measure time T(n) as
the number of elementary “steps” (in a model of
computation), provided each such step takes constant
time.

4 / 17



Private Key Encryption Time Complexity & Asymptotic Notations Private Key Encryption ..

(TIME) COMPLEXITY OF AN ALGORITHM

def is_prime(n):
for a in primes_upto(sqrt(n)):

if (a divides n):
return False

return True

▶ The time complexity deals with how fast or slow a
particular algorithm performs.

▶ We define it as a numerical function T(n), which represent
the running time of the algorithm as a function of input
size (in bits) n.

▶ But T(n) depends on the implementation! A given
algorithm will take different amounts of time on the same
inputs depending factors as: processor speed; instruction
set, disk speed, brand of compiler and etc. So we want to
define T(n), which do not depend on the above factors.

▶ The way around is to estimate efficiency of each
algorithm asymptotically. We will measure time T(n) as
the number of elementary “steps” (in a model of
computation), provided each such step takes constant
time.

4 / 17



Private Key Encryption Time Complexity & Asymptotic Notations Private Key Encryption ..

ASYMPTOTIC NOTATIONS
In this section we will consider functions that have N as their
domain and R≥0 as the range.

Definition (O-notation)
We say that a function f (n) is big-oh of g(n), written as
f (x) = O(g(n)), if there exists positive constants c and n0 such
that

0 ≤ f (n) ≤ c · g(n) for all n ≥ n0.

In other words O(g(n)) denotes a set of functions that satisfy
the above.

Remark
If lim

n→∞
f (n)
g(n) exists and lim

n→∞
f (n)
g(n) ̸= ∞ then f (n) = O(g(n)).

5 / 17



Private Key Encryption Time Complexity & Asymptotic Notations Private Key Encryption ..

ASYMPTOTIC NOTATIONS..

Example

▶ Show that f (x) = x2 + 2x + 1 is O(x2).
▶ Show that n2 is not O(n).

6 / 17



Private Key Encryption Time Complexity & Asymptotic Notations Private Key Encryption ..

ASYMPTOTIC NOTATIONS..

Definition (o-notation)
We say that a function f (n) is small-oh or little-oh of g(n), written
as f (x) = o(g(n)), if for any positive non zero constant c, there
exist a positive constant n0 such that

0 ≤ f (n) < c · g(n) for all n ≥ n0.

In other words o(g(n)) denotes a set of functions that satisfy the
above.

Remark
If lim

n→∞
f (n)
g(n) exists and lim

n→∞
f (n)
g(n) = 0 then f (n) = o(g(n)).

Example
Let f (n) = n2, then f (n) ̸= o(n2) but f (n) = o(n2 log n).

7 / 17



Private Key Encryption Time Complexity & Asymptotic Notations Private Key Encryption ..

ASYMPTOTIC NOTATIONS..

Definition (o-notation)
We say that a function f (n) is small-oh or little-oh of g(n), written
as f (x) = o(g(n)), if for any positive non zero constant c, there
exist a positive constant n0 such that

0 ≤ f (n) < c · g(n) for all n ≥ n0.

In other words o(g(n)) denotes a set of functions that satisfy the
above.

Remark
If lim

n→∞
f (n)
g(n) exists and lim

n→∞
f (n)
g(n) = 0 then f (n) = o(g(n)).

Example
Let f (n) = n2, then f (n) ̸= o(n2) but f (n) = o(n2 log n).

7 / 17



Private Key Encryption Time Complexity & Asymptotic Notations Private Key Encryption ..

ASYMPTOTIC NOTATIONS..

Definition (o-notation)
We say that a function f (n) is small-oh or little-oh of g(n), written
as f (x) = o(g(n)), if for any positive non zero constant c, there
exist a positive constant n0 such that

0 ≤ f (n) < c · g(n) for all n ≥ n0.

In other words o(g(n)) denotes a set of functions that satisfy the
above.

Remark
If lim

n→∞
f (n)
g(n) exists and lim

n→∞
f (n)
g(n) = 0 then f (n) = o(g(n)).

Example
Let f (n) = n2, then f (n) ̸= o(n2) but f (n) = o(n2 log n).

7 / 17



Private Key Encryption Time Complexity & Asymptotic Notations Private Key Encryption ..

ASYMPTOTIC NOTATIONS..

Definition (Ω-notation)
We say that a function f (n) is big-omega of g(n), written as
f (x) = Ω(g(n)), if there exists positive constants c and n0 such
that

0 ≤ c · g(n) ≤ f (n) for all n ≥ n0.

In other words Ω(g(n)) denotes a set of functions that satisfy
the above.

Remark
If lim

n→∞
f (n)
g(n) exists and lim

n→∞
f (n)
g(n) ̸= 0 then f (n) = Ω(g(n)).

8 / 17



Private Key Encryption Time Complexity & Asymptotic Notations Private Key Encryption ..

ASYMPTOTIC NOTATIONS..

Definition (ω-notation)
We say that a function f (n) is little-omega of g(n), written as
f (x) = ω(g(n)), if for any positive non zero constant c, there
exist a positive nonzero constant n0 such that

0 ≤ c · g(n) < f (n) for all n ≥ n0.

In other words Ω(g(n)) denotes a set of functions that satisfy
the above.

Remark
If lim

n→∞
f (n)
g(n) exists and lim

n→∞
f (n)
g(n) = ∞ then f (n) = ω(g(n)).

9 / 17



Private Key Encryption Time Complexity & Asymptotic Notations Private Key Encryption ..

Θ-NOTATION

Definition (Θ-Notation)
We say that a function f (n) is theta of g(n), written as
f (n) = Θ(g(n)), if there exists positive constants c1, c2 and n0
such that

0 ≤ c2 · g(n) ≤ f (n) ≤ c1 · g(n) for all n ≥ n0.

Remark
If lim

n→∞
f (n)
g(n) exists and lim

n→∞
f (n)
g(n) = c, where c is a non-zero positive

constant, then f (n) = Θ(g(n)).

10 / 17



Private Key Encryption Time Complexity & Asymptotic Notations Private Key Encryption ..

TERMINOLOGY FOR COMPLEXITY OF ALGORITHMS

Complexity (input size is n) Terminology
Θ(1) Constant complexity

Θ(log n) Logarithmic complexity
Θ(n) Linear complexity

Θ(n log n) Linearithmic complexity
Θ(nb), for positive integer b Polynomial complexity

Θ(bn), where b > 1 Exponential complexity
Θ(n!) Factorial Complexity

Ef
fic

ie
nt

▶ Algorithms with time complexity Θ(nb), where n is input
size and b is a non-zero positive integer, are called
polynomial time algorithms.

11 / 17



Private Key Encryption Time Complexity & Asymptotic Notations Private Key Encryption ..

TERMINOLOGY FOR COMPLEXITY OF ALGORITHMS

Complexity (input size is n) Terminology
Θ(1) Constant complexity

Θ(log n) Logarithmic complexity
Θ(n) Linear complexity

Θ(n log n) Linearithmic complexity
Θ(nb), for positive integer b Polynomial complexity

Θ(bn), where b > 1 Exponential complexity
Θ(n!) Factorial Complexity

Ef
fic

ie
nt

▶ Algorithms with time complexity Θ(nb), where n is input
size and b is a non-zero positive integer, are called
polynomial time algorithms.

11 / 17



Private Key Encryption Time Complexity & Asymptotic Notations Private Key Encryption ..

12 / 17



Private Key Encryption Time Complexity & Asymptotic Notations Private Key Encryption ..

PPT- PROBABILISTIC POLYNOMIAL TIME ALGORITHM

▶ The polynomial time algorithm is an algorithms with time
complexity O(nb), where n is input size and b is a fixed non
zero positive integer.

▶ A probabilistic algorithm is one that has the capability of
“tossing coins”, i.e. the algorithm has access to a random
source of randomness that yields unbiased random bits
that are independently equal to 1 with 1

2 probability and to
0 with 1

2 probability.
▶ A probabilistic polynomial-time algorithm is a

probabilistic algorithm that may only perform a
polynomial amount of operations including at most a
polynomial number of coin-flips.

13 / 17



Private Key Encryption Time Complexity & Asymptotic Notations Private Key Encryption ..

PRIVATE KEY ENCRYPTION

Let M,K and C represent the set of possible messages
(plaintexts), the set of possible keys and the set of possible
ciphertexts repectively.

ENC
m

k

c
DEC

k
c

m

public channel

14 / 17



Private Key Encryption Time Complexity & Asymptotic Notations Private Key Encryption ..

PRIVATE KEY ENCRYPTION..
A private key encryption algorithm is basically a set of three
algorithms (we will be more specific later) (GEN,ENC,DEC),
which have the following functionalities:

GEN It is a pobabilistic algorithm, called key generation
algorithm. It outputs a key k ∈ K chosen according to
some distribution.

ENC It is called encryption algorithm. It takes as input a key
k ∈ K and a message m ∈ M and outputs a ciphertext
c ∈ C.

DEC It is known as decryption algorithm. It take as input a
key k and a ciphertext c and outputs a plaintext m.

Furthermore, it must satisfy the following correctness
requirements:

DECk (ENCk (m)) = m∀m ∈ M,∀k ∈ K. (1)
15 / 17



Private Key Encryption Time Complexity & Asymptotic Notations Private Key Encryption ..

KERCKHOFFS’ PRINCIPLE

✔ The cipher method must not be required to be secret, and
it must be able to fall into the hands of the enmy without
inconvenience.

▶ The security of a cryptographic scheme relies solely on the
secrecy of the key, not on the secrecy of the underlying
algorithms.

16 / 17



Private Key Encryption Time Complexity & Asymptotic Notations Private Key Encryption ..

CAESER’S CIPHER (SHIFT CIPHER)

Let M = C = K = Z26 := {0, 1, . . . , 25}.
For 0 ≤ k ≤ 25, define

ENCk(m) = (m + k) mod 26

and

DECk(c) = (c − k) mod 26

▶ Caeser’s Cipher is the oldest recorded cipher, which is a
Shift Cipher with the key k = 3.

17 / 17


	Private Key Encryption
	Time Complexity & Asymptotic Notations
	Private Key Encryption ..

