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SETTING OF PRIVATE-KEY CRYPTOGRAPHY..
CLASSICAL CRYPTOGRAPHY
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▶ Before sending the message (plaintext) m, Alice transforms
(encrypts) it into a message c (ciphertext), using an
algorithm ENC and a key k.

▶ Bob, on receiving c, decrypts it to get m, using a
corresponding algorithm DEC and the same key k.

▶ The key k, needs to be (somehow) shared between the
two communicating parties in advance and it is not
known to the adversary.

▶ Alice and Bob could be same. Recall the disk encryption,
where the same party encrypts the data on a disk and
later decrypts it to get back the data.
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ALGORITHMS

-a step by step solution to a problem.

Important features of an algorithm
1. Finiteness: An algorithm must always terminate after a

finite number of steps.
2. Definiteness: Each step of an algorithm must be precisely

defined.
3. Input: An algorithm has zero or more inputs: quantities

that are given to it initially before the algorithm begins,
or dynamically as the algorithm runs.

4. Output: An algorithm has one or more outputs:
quantities that have a specified relation to the inputs.

5. Effectiveness: Its operations must all be sufficiently basic
that they can in principle be done exactly and in a finite
length of time by someone using pencil and paper.
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(TIME) COMPLEXITY OF AN ALGORITHM

def is_prime(n):
for a in primes_upto(sqrt(n)):

if (a divides n):
return False

return True

▶ The time complexity deals with how fast or slow a
particular algorithm performs.

▶ We define it as a numerical function T(n), which represent
the running time of the algorithm as a function of input
size (in bits) n.

▶ But T(n) depends on the implementation! A given
algorithm will take different amounts of time on the same
inputs depending factors as: processor speed; instruction
set, disk speed, brand of compiler and etc. So we want to
define T(n), which do not depend on the above factors.

▶ The way around is to estimate efficiency of each
algorithm asymptotically. We will measure time T(n) as
the number of elementary “steps” (in a model of
computation), provided each such step takes constant
time.
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ASYMPTOTIC NOTATIONS
In this section we will consider functions that have N as their
domain and R≥0 as the range.

Definition (O-notation)
We say that a function f (n) is big-oh of g(n), written as
f (x) = O(g(n)), if there exists positive constants c and n0 such
that

0 ≤ f (n) ≤ c · g(n) for all n ≥ n0.

In other words O(g(n)) denotes a set of functions that satisfy
the above.

Remark
If lim

n→∞
f (n)
g(n) exists and lim

n→∞
f (n)
g(n) ̸= ∞ then f (n) = O(g(n)).
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ASYMPTOTIC NOTATIONS..

Example

▶ Show that f (x) = x2 + 2x + 1 is O(x2).
▶ Show that n2 is not O(n).
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ASYMPTOTIC NOTATIONS..

Definition (o-notation)
We say that a function f (n) is small-oh or little-oh of g(n), written
as f (x) = o(g(n)), if for any positive non zero constant c, there
exist a positive constant n0 such that

0 ≤ f (n) < c · g(n) for all n ≥ n0.

In other words o(g(n)) denotes a set of functions that satisfy the
above.

Remark
If lim

n→∞
f (n)
g(n) exists and lim

n→∞
f (n)
g(n) = 0 then f (n) = o(g(n)).

Example
Let f (n) = n2, then f (n) ̸= o(n2) but f (n) = o(n2 log n).
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ASYMPTOTIC NOTATIONS..

Definition (Ω-notation)
We say that a function f (n) is big-omega of g(n), written as
f (x) = Ω(g(n)), if there exists positive constants c and n0 such
that

0 ≤ c · g(n) ≤ f (n) for all n ≥ n0.

In other words Ω(g(n)) denotes a set of functions that satisfy
the above.

Remark
If lim

n→∞
f (n)
g(n) exists and lim

n→∞
f (n)
g(n) ̸= 0 then f (n) = Ω(g(n)).
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ASYMPTOTIC NOTATIONS..

Definition (ω-notation)
We say that a function f (n) is little-omega of g(n), written as
f (x) = ω(g(n)), if for any positive non zero constant c, there
exist a positive nonzero constant n0 such that

0 ≤ c · g(n) < f (n) for all n ≥ n0.

In other words Ω(g(n)) denotes a set of functions that satisfy
the above.

Remark
If lim

n→∞
f (n)
g(n) exists and lim

n→∞
f (n)
g(n) = ∞ then f (n) = ω(g(n)).
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Θ-NOTATION

Definition (Θ-Notation)
We say that a function f (n) is theta of g(n), written as
f (n) = Θ(g(n)), if there exists positive constants c1, c2 and n0
such that

0 ≤ c2 · g(n) ≤ f (n) ≤ c1 · g(n) for all n ≥ n0.

Remark
If lim

n→∞
f (n)
g(n) exists and lim

n→∞
f (n)
g(n) = c, where c is a non-zero positive

constant, then f (n) = Θ(g(n)).
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TERMINOLOGY FOR COMPLEXITY OF ALGORITHMS

Complexity (input size is n) Terminology
Θ(1) Constant complexity

Θ(log n) Logarithmic complexity
Θ(n) Linear complexity

Θ(n log n) Linearithmic complexity
Θ(nb), for positive integer b Polynomial complexity

Θ(bn), where b > 1 Exponential complexity
Θ(n!) Factorial Complexity

Ef
fic

ie
nt

▶ Algorithms with time complexity Θ(nb), where n is input
size and b is a non-zero positive integer, are called
polynomial time algorithms.
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PPT- PROBABILISTIC POLYNOMIAL TIME ALGORITHM

▶ The polynomial time algorithm is an algorithms with time
complexity O(nb), where n is input size and b is a fixed non
zero positive integer.

▶ A probabilistic algorithm is one that has the capability of
“tossing coins”, i.e. the algorithm has access to a random
source of randomness that yields unbiased random bits
that are independently equal to 1 with 1

2 probability and to
0 with 1

2 probability.
▶ A probabilistic polynomial-time algorithm is a

probabilistic algorithm that may only perform a
polynomial amount of operations including at most a
polynomial number of coin-flips.
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PRIVATE KEY ENCRYPTION

Let M,K and C represent the set of possible messages
(plaintexts), the set of possible keys and the set of possible
ciphertexts repectively.
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PRIVATE KEY ENCRYPTION..
A private key encryption algorithm is basically a set of three
algorithms (we will be more specific later) (GEN,ENC,DEC),
which have the following functionalities:

GEN It is a pobabilistic algorithm, called key generation
algorithm. It outputs a key k ∈ K chosen according to
some distribution.

ENC It is called encryption algorithm. It takes as input a key
k ∈ K and a message m ∈ M and outputs a ciphertext
c ∈ C.

DEC It is known as decryption algorithm. It take as input a
key k and a ciphertext c and outputs a plaintext m.

Furthermore, it must satisfy the following correctness
requirements:

DECk (ENCk (m)) = m∀m ∈ M,∀k ∈ K. (1)
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KERCKHOFFS’ PRINCIPLE

✔ The cipher method must not be required to be secret, and
it must be able to fall into the hands of the enmy without
inconvenience.

▶ The security of a cryptographic scheme relies solely on the
secrecy of the key, not on the secrecy of the underlying
algorithms.
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CAESER’S CIPHER (SHIFT CIPHER)

Let M = C = K = Z26 := {0, 1, . . . , 25}.
For 0 ≤ k ≤ 25, define

ENCk(m) = (m + k) mod 26

and

DECk(c) = (c − k) mod 26

▶ Caeser’s Cipher is the oldest recorded cipher, which is a
Shift Cipher with the key k = 3.
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