# Modern Cryptography Private Key Encryption Scheme

Shashank Singh

**IISER Bhopal** 

# PRIVATE KEY ENCRYPTION-UPDATED DEFNITION

It is defined by three algorithms (GEN, ENC, DEC), and a specification of a finite message space  $\mathcal{M}$ , with  $|\mathcal{M}| > 1$ , with the following properties:

- GEN:  $k \leftarrow \text{GEN}()$ , a probabilistic algorithm that outputs a key k.  $\mathcal{K} = \{k \mid k \leftarrow \text{GEN}()\}$  is the key space.
- ENC: A probabilistic algorithm ENC.  $c \leftarrow \text{ENC}(k, m)$  where  $k \in \mathcal{K}$  and  $m \in \mathcal{M}$ . We denote by  $\mathcal{C} = \{\text{ENC}_r(k, m) : k \in \mathcal{K}, m \in \mathcal{M} \text{ and } r \text{ is randomness of ENC}\}$
- DEC: It is the decryption algorithm. m := DEC(k, c) where  $k \in \mathcal{K}$  and  $c \in \mathcal{C}$ .

Furthermore,  $DEC_k(ENC_k(m)) = m \forall m \in \mathcal{M}, \forall k \in \mathcal{K}$ .

# PRIVATE-KEY ENCRYPTION -MODIFIED DEFINITION

It is a tuple of PPT algorithms (GEN, ENC, DEC), such that

- ► The key-generation algorithm GEN takes input as  $1^n$  and outputs a key k; we write  $k \to \text{GEN}(1^n)$ . (wlog assume  $|k| > n \ \forall k$ )
- ▶  $c \leftarrow \text{ENC}(k, m)$  where  $m \in \{0, 1\}^*$ .
- ► The decryption algorithm DEC takes as input a key *k* and a ciphertext *c*, and outputs a message *m* or an *error*.

It is required that for every n, for every key k output by  $GEN(1^n)$  and every  $m \in \{0,1\}^*$ , it holds that DEC(k, ENC(k, m)) = m.

- ▶ We denote by **K** a random variable denoting the value of the key output by GEN, thus for any  $k \in \mathcal{K}$ ,  $\Pr[\mathbf{K} = k]$  denotes the probability that the key output by GEN is equal to k.
- ► Similarly **M** and **C** will be used to represent the random variable for message space and key space.
- ► Furthermore **K** and **M** are assumed to be independent.

# Example

Consider a Shift Cipher. We have  $\mathcal{K} = \{0, 1, 2, \dots, 25\}$  with  $\Pr\left[\mathbf{K} = k\right] = 1/26$  for each  $k \in \mathcal{K}$ . Assume that we are give the following distribution over  $\mathcal{M}$ .

$$Pr[M = y] = 0.7 \text{ and } Pr[M = n] = 0.3$$

What is the probability that the ciphertext is *B*?

## PERFECT SECRECY

#### Definition

An encryption scheme (GEN, ENC, DEC) with message space  $\mathcal{M}$  is perfectly secret if for every probability distribution over  $\mathcal{M}$ , every message  $m \in \mathcal{M}$  and every ciphertext  $c \in \mathcal{C}$  for witch  $\Pr[\mathbf{C} = c] > 0$ ;

$$\Pr\left[\mathbf{M} = m | \mathbf{C} = c\right] = \Pr\left[\mathbf{M} = m\right] \tag{1}$$

#### **EXERCISE:**

An encryption scheme (GEN, ENC, DEC) with message space  $\mathcal{M}$  is perfectly secret if and only if the following holds for every  $m, m' \in \mathcal{M}$ :

$$\Pr\left[\text{ENC}\left(m\right) = c\right] = \Pr\left[\text{ENC}\left(m'\right) = c\right],\tag{2}$$

where the probabilities are over choice of key k and internal randomness of ENC.

## Note that,

- $\Pr\left[\text{ENC}(m) = c\right] = \Pr\left[\mathbf{C} = c \mid \mathbf{M} = m\right]$
- The Eq. 2 implies that  $Pr[\mathbf{C} = c \mid \mathbf{M} = m]$  is independent of m.
- The set {Pr [**C** = c | **M** =  $m^*$ ] : c ∈ C} is the distribution of cipher text when the message  $m^*$  is encrypted.



### SOLUTION:

$$Eqn. 1 \Leftarrow Eqn. 2$$

– Let Pr[C = c] > 0, by the law of total probability

$$\Pr\left[\mathbf{C} = c\right] = \sum_{m \in \mathcal{M}} \Pr\left[\mathbf{C} = c \mid \mathbf{M} = m\right] \cdot \Pr\left[\mathbf{M} = m\right]$$
$$= \sum_{m \in \mathcal{M}} \Pr\left[\text{ENC}(m) = c\right] \cdot \Pr\left[\mathbf{M} = m\right]$$
$$= \Pr\left[\text{ENC}(m) = c\right] \sum_{m \in \mathcal{M}} \frac{\Pr\left[\mathbf{M} = m\right]}{m}.$$

Hence, 
$$Pr[\mathbf{M} = m \mid \mathbf{C} = c] = Pr[\mathbf{M} = m]$$
. (By Bayes' Rule)

### Eqn. 1 $\Longrightarrow$ Eqn. 2

We will prove the contrapositive.  $\neg$ Eqn. 2  $\Longrightarrow \neg$ Eqn. 1.

- Let  $q = \Pr[\mathbf{C} = c \mid \mathbf{M} = m]$  and  $q' = \Pr[\mathbf{C} = c \mid \mathbf{M} = m']$ . WLOG, we can assume q > q'.
- Consider a distribution on  $\mathcal{M}$  with support  $\{m, m'\}$ . Let  $\Pr[\mathbf{M} = m] = p, \Pr[\mathbf{M} = m'] = 1 - p.$
- Pr  $[\mathbf{C} = c] = q \cdot p + q' \cdot (1 p)$ , hence  $q' < \Pr[\mathbf{C} = c] < q$ . Pr  $[\mathbf{M} = m \mid \mathbf{C} = c] = \left(\frac{q}{q \cdot p + q' \cdot (1 p)}\right) \cdot p > p$ ; a contradiction!

## PERFECT INDISTINGUISHABILITY

Let  $\Pi=(\texttt{GEN},\texttt{ENC},\texttt{DEC})$  be an encryption scheme with message space  $\mathcal{M}.$  For an adv.  $\mathcal{A}$ , we define an experiment as follows:

# $\operatorname{Priv} K_{\mathcal{A},\Pi}^{\text{eav}}:$

- 1. A outputs a pair of messages  $m_0, m_1 \in \mathcal{M}$ .
- 2. A key  $k \leftarrow \text{GEN}()$  and  $b \overset{\$}{\leftarrow} \{0,1\}$  are chosen. The challenge ciphertext  $c \rightarrow \text{ENC}_k(m_b)$  is given to  $\mathcal{A}$ .
- 3. A outputs a bit b'.
- 4. The experiment returns  $b' \stackrel{?}{=} b$ .

If  $PrivK_{A,\Pi}^{eav} = 1$ , we say that the adv. A succeeds.

## PERFECT INDISTINGUISHABILITY...

### Definition

An encryption scheme  $\Pi=(\texttt{GEN},\texttt{ENC},\texttt{DEC})$  with message space  $\mathcal M$  is perfectly indistinguishable if for every  $\mathcal A$  it holds that

$$\text{Pr}\left[\text{Priv}K_{\mathcal{A},\Pi}^{\text{eav}}=1\right]=\frac{1}{2}$$

# HOMEWORK

**Exercise:** An encryption scheme  $\Pi$  is perfectly secret if and only if it is perfectly indistinguishable

# SOLUTION: PI $\Longrightarrow$ PS

## We prove $\neg PS \implies \neg PI$ .

▶ There exists  $m_0, m_1 \in \mathcal{M}$  and  $c \in \mathcal{C}$  such that

$$\underbrace{\Pr\left[\mathbf{C}=c\mid\mathbf{M}=m_{0}\right]}_{q_{0}}\neq\underbrace{\Pr\left[\mathbf{C}=c\mid\mathbf{M}=m_{1}\right]}_{q_{1}}.$$

▶ WLOG, we can assume  $q_0 > q_1$ . We construct an adversary  $\mathcal{A}$  for which,  $\Pr\left[\operatorname{PrivK}_{\mathcal{A},\Pi}^{\text{eav}} = 1\right] > \frac{1}{2}$ .

-  $\mathcal{A}\left(c'\right) = 0$  if c' = c; 1 otherwise.

$$\Pr [b' = b] = \frac{1}{2} \Pr [b' = 0 \mid b = 0] + \frac{1}{2} \Pr [b' = 1 \mid b = 1]$$

$$= \frac{1}{2} q_0 + \frac{1}{2} (1 - q_1) = \frac{1}{2} + \frac{1}{2} (q_0 - q_1) > \frac{1}{2}$$

# SOLUTION: PS $\implies$ PI

- ▶  $\mathcal{A}$ 's behavior  $b' := \mathcal{A}(c)$  depends only on c and not on b as the distribution of the input c remains the same irrespective of b = 0 or b = 1. (Def. of Perfect Secracy)
- ► Let  $\Pr[b' = 1 \mid b = 0] = \Pr[b' = 1 \mid b = 1] = p \text{ (say)}.$

$$\Pr[b' = b] = \frac{1}{2} \Pr[b' = 0 \mid b = 0] + \frac{1}{2} \Pr[b' = 1 \mid b = 1]$$

$$= \frac{1}{2} (1 - p) + \frac{1}{2} p = \frac{1}{2}$$

# VERNAM CIPHER (ONE TIME PAD)

#### Definition

Fix an integer  $\ell > 0$ . The message space  $\mathcal{M}$ , key space  $\mathcal{K}$ , and ciphertext space  $\mathcal{C}$  are all equal to  $\{0,1\}^{\ell}$ .

- ▶ GEN chooses the key k according to uniform distribution on K.
- ► Given a key  $k \in \{0,1\}^{\ell}$  and a message  $m \in \{0,1\}^{\ell}$ ,

$$ENC_k(m) = m \oplus k$$

▶ Given a key  $k \in \{0,1\}^{\ell}$  and a ciphertext  $c \in \{0,1\}^{\ell}$ ,

$$\mathrm{DEC}_k(c) = c \oplus k$$

Exercise: One-time pad encryption scheme is perfectly secret.



# VERNAM CIPHER (ONE TIME PAD)

#### Definition

Fix an integer  $\ell > 0$ . The message space  $\mathcal{M}$ , key space  $\mathcal{K}$ , and ciphertext space  $\mathcal{C}$  are all equal to  $\{0,1\}^{\ell}$ .

- ▶ GEN chooses the key k according to uniform distribution on K.
- ► Given a key  $k \in \{0,1\}^{\ell}$  and a message  $m \in \{0,1\}^{\ell}$ ,

$$ENC_k(m) = m \oplus k$$

▶ Given a key  $k \in \{0,1\}^{\ell}$  and a ciphertext  $c \in \{0,1\}^{\ell}$ ,

$$\mathrm{DEC}_k(c) = c \oplus k$$

**Exercise:** One-time pad encryption scheme is perfectly secret.



# Theorem *One-time pad encryption scheme is perfectly secret.* Proof. Theorem *If* (GEN, ENC, DEC) *is a perfectly secret encryption scheme with message space* $\mathcal{M}$ *and key space* $\mathcal{K}$ *, then* $|\mathcal{K}| \geq |\mathcal{M}|$ *.* Proof.